Binary tree time adaptive self-organizing map

نویسنده

  • Hamed Shah-Hosseini
چکیده

An adaptive hierarchical structure called ‘‘Binary Tree TASOM’’ (BTASOM) is proposed, which resembles a binary natural tree having nodes composed of Time Adaptive Self-Organizing Map (TASOM) networks. The standard TASOM is almost as slow as the standard SOM and has a fixed number of neurons. The BTASOM is proposed to make the TASOM fast and adaptive in the number of its neurons. The BTASOM is the first proposed hierarchical structure that uses a binary tree topology with TASOM networks. The number of levels of the BTASOM and the number of its nodes are adaptive to the accuracy demanded by the application through user-defined parameters. Two versions of the BTASOM are used here: the first version in which every node has only one neuron, and the second version in which every node has exactly two neurons. Both versions are tested with different distributions, stationary and nonstationary, for data representation. The experiments show that the BTASOM can work with both stationary and nonstationary environments while increasing the adaptability and speed of the standard TASOM. Several performance measures demonstrate the superiority of the proposed BTASOM in comparison with some other hierarchical SOM-based networks for clustering and input space approximation. & 2011 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

Experimental comparison of recursive self-organizing maps for processing tree-structured data

Self-organizing neural network models have recently been extended to more general data structures, such as sequences or trees. We empirically compare three recursive models of the self-organizing map – SOMSD, MSOM and RecSOM – using three different tree data sets with the increasing level of complexity: binary syntactic trees, ternary linguistic propositions and 5-ary graphical data. We evaluat...

متن کامل

Uncovering the Hierarchical Structure of Text Archives by Using an Unsupervised Neural Network with Adaptive Architecture

Discovering the inherent structure in data has become one of the major challenges in data mining applications. It requires the development of stable and adaptive models that are capable of handling the typically very high-dimensional feature spaces. In this paper we present the Growing Hierarchical Self-Organizing Map (GH-SOM), a neural network model based on the self-organizing map. The main f...

متن کامل

An efficient compression scheme for data communication which uses a new family of self-organizing binary search trees

In this paper, we demonstrate that we can effectively use results from the field of adaptive self-organizing data structures in enhancing compression schemes. Unlike adaptive lists, which have already been used in compression, to the best of our knowledge, adaptive self-organizing trees have not been used in this regard. To achieve this, we introduce a new data structure, the Partitioning Binar...

متن کامل

A novel pattern recognition algorithm: Combining ART network with SVM to reconstruct a multi-class classifier

Based on the principle of one-against-one support vector machines (SVMs) multi-class classification algorithm, this paper proposes an extended SVMs method which couples adaptive resonance theory (ART) network to reconstruct a multi-class classifier. Different coupling strategies to reconstruct a multi-class classifier from binary SVM classifiers are compared with application to fault diagnosis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2011